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Abstract

Traditionally, input-output tables are updated or regionalized using the well-
known RAS approach, which allows an easy implementation by means of an iterative
method. This paper uses a variant in which weights are attached to the percentage
changes in the input-output cell values. Existing methods primarily focus on the
solution of the primal problem, but it is known in mathematical programming that
every primal optimization problem has an associated dual one which has impor-
tant properties that provide extra information about the solution of the problem.
This paper is devoted to the solution and interpretation of the weighted RAS dual
problem from a sensitivity point of view. As it is well known in the restrictions of
the RAS method one of them is not necessary as the condition for compatibility
is that the sum of columns has to be equal to the sum of rows. It is found that
the optimum values of the dual variables are dependent on the restriction we take
out from the initial ones. For this reason it has been developed a method to attain
sensitivities that are not affected by which restriction is taken out. In this way a
new dual sensitivity matrix is created whose elements represent the sensitivity of the
RAS method objective function to the economic interchange between two sectors.
On the other hand the highest values of this dual sensitivity matrix can show us
which economic transactions are most influential in the change of a certain regional
economy.
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1 Introduction

Sensitivity analysis consists of determining “how” and “how much” specific changes in

the parameters of an optimization problem influence the optimal objective function value

and the point (or points) where the optimum is attained.
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The problem of sensitivity analysis in nonlinear programming has been discussed by

several authors, as, for example, Vanderplaats [19], Sobiesky et al. [17], Enevoldsen, [10],

Roos, Terlaky and Vial [16], Bjerager and Krend [3], etc. There are at least three ways

of deriving equations for the unknown sensitivities: (a) the Lagrange multiplier equations

of the constrained optimum (see Sobiesky et al. [17]), (b) differentiation of the Karush–

Kuhn–Tucker conditions to obtain the sensitivities of the objective function with respect

to changes in the parameters (see Vanderplaats [19], Sorensen and Enevoldsen [18] or

Enevoldsen, [10]), and (c) the extreme conditions of a penalty function (see Sobiesky et

al. [17]).

The existing methods for sensitivity analysis may present four main limitations:

1. They provide the sensitivities of the objective function value and the primal variables

values with respect to parameters, but not the sensitivities of the dual variables with

respect to parameters.

2. For different cases there are diverse methods for obtaining each of the sensitivities

(optimal objective function value or primal variable values with respect to parame-

ters), but there is no integrated approach providing all the sensitivities at once.

3. They assume the existence of partial derivatives of the objective function or the

optimal solutions with respect to the parameters; however, this is not always the

case. In fact, there are cases in which partial or directional derivatives fail to exist.

In addition, most techniques reported in the literature do not distinguish between

right and left derivatives. Ross, Terlaky and Vial [16] state:

“It is surprising that in the literature on sensitivity analysis it is far from

common to distinguish between left- and right-shadow prices”.

By left- and right-shadow prices they mean left- and right-derivatives of the objective

function with respect to parameters at the current optimal value.

4. They assume that the active constraints remain active, which implies that there is

no need to distinguish between equality or inequality constraints, because all the

active constraints can be considered as equality constraints, and inactive constraints

will remain inactive for small changes in the parameters. As a consequence, the set

of possible changes (perturbations) has (locally) the structure of a linear space.
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2 Methodology

In this section we analyze the sensitivity of the optimal solution of a nonlinear program-

ming problem to changes in the data values. Many authors, as those already mentioned,

have studied different versions of this problem. Some of them have dealt with the linear

programming problem and discussed the effect of changes of (i) the cost coefficients, (ii)

the right hand sides of the constraints or (iii) the constraint coefficients on either (a) the

optimal value of the objective function or (b) the optimal solution. A similar analysis has

been done for nonlinear problems. However, these authors have dealt only with changes

that keep invariant the set of active constraints.

The goal consists in getting a interindustry transactions matxix z as close as posible

to the original one zo, using a special measurement between matrixes. It is rather logical,

if we do not have more detailed information, to modify as less as possible the economic

structure [12].

Consider the following Nonlinear Programming Problem (NLPP) [1] and [13]:

Minimize
z

f(z, zo, w) =
m∑

i=1

∑
∀j; (i,j)/∈Ω0

zij ln

(
wij

zij

zo
ij

)
, (1)

subject to

m∑
j=1

zij = ui; i = 1, . . . ,m, : λi (2)

m∑
i=1

zij = vj; i = 2, . . . ,m : µj, (3)

where w is the vector which contains the associated weights to each transfer, u and v are

the sum by rows and columns of the final interindustry transactions matxix, respectively,

and the set Ω0 contains the indexes of the zero-elements of the matrix zo; the use of this

set is due to the fact that the objective function is not defined for those specific values.

This involves that once the problem is solved (1)-(3) the elements of the new matrix whose

indexes agreed with those of Ω0 set are zero zij = 0; ∀(i, j) ∈ Ω0. In this way it could be

added an aditional restriction to the original problem that would not change the solution:

zi,j = zo
ij; ∀(i, j) ∈ Ω0 : κij. (4)

All the depicted elements so far belong to the primal problem. On the other hand it is

known that any optimization problem has another problem very linked to it named dual
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problem, where λ, µ and κ are their variables (dual variables), which are associated to

the restrictions of primal problem (2)-(4), respectively.

We should note that the solution of the problem (1)-(4) has to fulfil the following

condition:

m∑
i=1

ui =
m∑

j=1

vj, (5)

For that reason the number of restrictions is 2m − 1, that is, one of the restrictions

has been eliminated to keep always the condition of compatibility. Later it is explained

why it has been chosen to eliminate the sum of the first column and what is the effect if

another restriction is eliminated.

The dual problem of primal problem (1)-(4) in this situation is defined as:

Maximize
λ, µ, κ

φ(λ, µ, κ) , (6)

where the function φ is the dual function.

Using the Lagrangian function:

L(z, λ, µ) = f(z, zo, w) + λTh(z, u) + µT g(z, v) + κT t(z, zo), (7)

where z is the vector of the decision variables, f : IRm2−nz → IR is the objective function,

and h : IRm → IRm, g : IRm → IRm−1 and t : IRnz → IRnz , where nz is the number of

elements of set Ω0, and h(z, u), g(z, v) and t(z, zo) are the equality restraints linked to

the sum by rows (2), to the sum by columns (3) and the null elements (4), respectively.

The dual problem (6) can be rewritten as:

maximize
λ, µ, κ

 Infimum
z

L(z, zo, w, u, v, λ, µ, κ)

 (8)

Remark 1 It is supposed that f, h, g, and t are in such way that the infimum of la-

grangian function is reached in some point z, in such way that the infimum operator in

(8) can be replaced with the minimum operator. For this reason the problem (8) is known

as dual problem max–min.

The lagrangian function particularized for the problem (2)-(4) is:

L(z, zo, w, u, v, λ, µ, κ) =
m∑

i=1

∑
∀j; (i,j)/∈Ω0

zij ln

(
wij

zij

zo
ij

)
+

m∑
i=1

λi

 m∑
j=1

zij − ui

+

m∑
j=2

µj

(
m∑

i=1

zij − vj

)
+

∑
∀(i,j)∈Ω0

κij

(
zij − zo

ij

)
.

(9)
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Definition 1 (Regular point). The solution to an optimization problem z∗, λ∗, µ∗,

κ∗ and f ∗ is considered a regular point if the active restrictions gradients are linearly

independient.

Theorem 1 (Sensitivities with respect to the objetive function). If we have the

optimization problem (1)-(4) whose solution is a regular point, then it is carried out that:

∂f(z∗, zo, w)

∂ui

= −λi; i = 1, . . . ,m, (10)

∂f(z∗, zo, w)

∂vj

= −µj; i = 2, . . . ,m, (11)

∂f(z∗, zo, w)

∂aij

= −κij; ∀(i, j) ∈ Ω0, (12)

that is, the sensitivities of the optimum value of the problem objective function (1)-(4)

with respect to the changes in the parameters u, v and the null terms of zo, that are in

the right terms of the restrictions (2)-(4), respectively, agreed with the optimum values of

the dual variables associated to each restriction with the opposite sign.

The demonstration of this theorem can be found, for example, in Luenberger [11] or

Conejo et al. [9].

It is important to insist that the parameters whose sensitivities we want to know have

to appear in the right terms of the restrictions for this theorem to be applied. For that

reason, it is not possible with this method to know the sensitivity of the objective function

with respect to the weights w and the non null terms of the initial matrix zo.

Now the starting point is the non-linear equations system but including the dual

variables associated to all the sums by rows and by columns, that is, we take out the

condition ∀j/ j ≥ 2. If the terms are reorganized we have the following linear equations

system:

λi + µj = −1− ln

(
wij

zij

zo
ij

)
; i = 1; . . . , m; ∀j/ (i, j) /∈ Ω0 (13)

λi + µj + κij = 0; ∀(i, j) ∈ Ω0. (14)

First of all we focus on (13) which allow us to calculate the multipliers λ and µ, and

later we will get the values of κ using (14).

We have in (13) m2−nz equations while the number of unknowns is 2m if we take into

account that we include the associated multipliers to every sum by rows and by columns

and that the condition of compatibility (5) is kept.
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As it can be seen in normal conditions, that is, if the number of null elements in the

original matriz zo fulfils that nz ≤ m2−2m, then we have enough number of equations to

solve the system (13). In fact, in the majority of the cases we have more equations than

the necessary ones; in that case we have to select the system coefficients matrix (13), that

is going to be called cλ,µ, sub-matrix whose rank is equal to 2m, and proceed to solve.

The starting point for the suitable selection of that coefficients sub-matrix is the

original coefficients matrix.

In principle it is considered that there are not null elements in the original matrix zo,

that is, nz = 0 to simplify the analysis. In this case the structure of coefficients matrix

cλ,µ and the independent terms vector bλ,µ is:

cλ,µ =



λ1 0 0 · · · 0 µ1 0 0 · · · 0
λ1 0 0 · · · 0 0 µ2 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
λ1 0 0 · · · 0 0 0 0 · · · µm

0 λ2 0 · · · 0 µ1 0 0 · · · 0
0 λ2 0 · · · 0 0 µ2 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 λ2 0 · · · 0 0 0 0 · · · µm

0 0 λ3 · · · 0 µ1 0 0 · · · 0
0 0 λ3 · · · 0 0 µ2 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 λ3 · · · 0 0 0 0 · · · µm

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · λm µ1 0 0 · · · 0
0 0 0 · · · λm 0 µ2 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · λm 0 0 0 · · · µm



and bλ,µ =



−1− ln (w11z11/z
o
11)

−1− ln (w12z12/z
o
12)

...
−1− ln (w1mz1m/zo

1m)
−1− ln (w21z21/z

o
21)

−1− ln (w22z22/z
o
22)

...
−1− ln (w2mz2m/zo

2m)
−1− ln (w31z31/z

o
31)

−1− ln (w32z32/z
o
32)

...
−1− ln (w3mz3m/zo

3m)
...

−1− ln (wm1zm1/z
o
m1)

−1− ln (wm2zm2/z
o
m2)

...
−1− ln (wmmzmm/zo

mm)



.

(15)

Using the ortogonalization method proposed by Castillo et al. [4, 5, 8], it can be

demonstrated that the coefficients matrix rank cλ,µ is 2m− 1; therefore the solution of

the system (13) is a vectorial space (see Padberg [14] and Castillo et al. [6, 7]) in the

following way:

[
λ
µ

]
=

[
λ0

µ0

]
+ ρ

[
λ1

µ1

]
, (16)

composed by a particular solution (λ0, µ0)
T plus a vectorial space where ρ ∈ IR, and
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(λ1, µ1)
T are the solution of the homogeneous space.

As ρ can take infinite values, the system, and therefore the dual problem, has infinite

solutions. For that reason in the primal problem (1)-(4) it is eliminated the restriction

associated to the first row; in that way the linear system needed to solve the dual problem

has 2m− 1 rank, so the number of equations 2m− 1 is equal to the number of unknowns

2m− 1 and the system has an unique solution.

Remark 2 It is necessary to eliminate one of the equations sum by rows or sum by

columns for the system (13) and therefore the dual problem has a unique solution. This is

due to one of the equations means redundant information for the compatibility condition

(5).

In the Figure 1 it is shown a graphic interpretation of the effect of a redundant restraint

in the solution of an optimization problem. It has to be underlined that if we take out

any of the restrictions h(z) = 0, g1(z) = 0 or g2(z) = 0 the solution of the primal

problem is the same; nevertheless in the dual problem there are infinite combinations of

the dual variables values λ, µ1, and µ2 so if we multiply the dual variables by the restraints

gradients we get the objective function gradient with the opposite sign. For this reason

it is said that there is a redundant restraint.

The next step consists in determining:

1. Which submatrix with dimensions ((2m− 1)× (2m− 1)) is selected.

2. If the selection of the submatrix is decisive in the solution.

3. Choose which of the dual variables associated to row and column restrictions is

removed and, again, know which are the consequences if one specific dual variable

is chosen to be removed.

To give an answer to these questions initially we are going to select the following

2m×2m dimension block from the matrix cλ,µ and its corresponding independent terms

vector:
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6.252.251

z2 h (z)=0

z1

f(z*)

f(z)=5

4

g1(z)=0

9

z*

f(z*)

h1(z*)l g11 (z*)m

0.5 1.5 2 2.5 3

2

2.5

3

1

Único punto factible

h (z*)
g1(z*)

g2(z)=0

g2(z*)

g22 (z*)m

Figure 1: Graphic interpretation of a redundant restraint in the bidimensional case.
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cλ,µ =



λ1 0 0 · · · · · · · · · 0 µ1 0 0 · · · 0
λ1 0 0 · · · · · · · · · 0 0 µ2 0 · · · 0
0 λ2 0 · · · · · · · · · 0 µ1 0 0 · · · 0
0 0 λ3 · · · · · · · · · 0 µ1 0 0 · · · 0
...

...
...

. . . . . . . . .
...

...
...

...
. . .

...

0 0 0
. . . λi

. . . 0 µi 0 0
. . . 0

...
...

...
. . . . . . . . . · · · ...

...
...

. . .
...

0 0 0 · · · · · · · · · λm µ1 0 0 · · · 0
0 0 0 · · · · · · · · · λm 0 µ2 0 · · · 0
...

...
... · · · · · · · · · ...

...
...

...
. . .

...
0 0 0 · · · · · · · · · λm 0 0 0 · · · µm



and bλ,µ =



−1− ln (w11z11/z
o
11)

−1− ln (w12z12/z
o
12)

−1− ln (w21z21/z
o
21)

−1− ln (w31z31/z
o
31)

...
−1− ln (wi1zi1/z

o
i1)

...
−1− ln (wm1zm1/z

o
m1)

−1− ln (wm2zm2/z
o
m2)

...
−1− ln (wmmzmm/zo

mm)



.

(17)

It can be demonstrated that the former matrix has the rank 2m − 1, so if the ortogona-

lization method is used the infinite solutions of the system (13) may be obtained. This

system is finally in the following way:



λ1

λ2

λ3
...
λi
...
λm

µ1

µ2

µ3

µ4
...
µm



=



−1− ln (w11z11/z
o
11)

−1− ln (w21z21/z
o
21)

−1− ln (w31z31/z
o
31)

...
−1− ln (wi1zi1/z

o
i1)

...
−1− ln (wm1zm1/z

o
m1)

0
− ln (w12z12/z

o
12) + ln (w11z11/z

o
11)

− ln (wm3zm3/z
o
m3) + ln (wm1zm1/z

o
m1)

− ln (wm4zm4/z
o
m4) + ln (wm1zm1/z

o
m1)

...
− ln (wmmzmm/zo

mm) + ln (wm1zm1/z
o
m1)



+ ρ



−1
−1
−1
...
−1
...
−1
1
1
1
1
...
1



, (18)

where only elements from the first row and column from the matrixes z, zo y w take part.

It has to be noticed, for example, that if we want the dual variable µ1 value to be

always zero, the only value of ρ that would fulfil that condition would be ρ = 0; in that case

there would be one an only solution to the dual problem, that would be the same solution

obtained when the system (17) is resolved if the second row from the coeficients matrix

and from the independent terms vector and the (m + 1)th column from the coeficients

matrix are removed.
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Precisely this solution corresponds with the system, in which the first restraint linked

to the columns sum is taken out, that is, the multiplier µ1.

The spatial or economic meaning of this solution is an easy one, as it was told in the

Theorem 1; the dual variables, in particular λ and µ, are the sensitivities of the objective

function with respect to the changes in the parameters u y v, respectively. As the partial

derivative involves the change in the objective function when only one parameter changes,

obviously if the rest of the parameters u and v do not change when one of them does, the

contition of compatibility (5) is not fulfilled and the problem has no solution. For this

reason it is necessary not to include one of the dual variables to allow the fulfillment of

the contition of compatibility for every occasion, and in the particular case of the solution

(18), the v1 value is used to fulfil the contition of compatibility.

After this discussion the following question which may be raised is if it is possible to

take out another dual variable or restraint and, in this case, which would be the solution

of the dual problem. The answer is affirmative: if we start from the infinite solutions let’s

suppose that we want to take out the i th restraint in the row sums which corresponds to

dual variable λi. For that it is enough to select the suitable value of parameter ρ to make

zero λi in the final solution. In this case ρ = −(1 + ln (wi1zi1/z
o
i1)) so the final solution is:



λ1

λ2

λ3
...
λi
...
λm

µ1

µ2

µ3

µ4
...
µm



=



−1− ln (w11z11/z
o
11) + (1 + ln (wi1zi1/z

o
i1))

−1− ln (w21z21/z
o
21) + (1 + ln (wi1zi1/z

o
i1))

−1− ln (w31z31/z
o
31) + (1 + ln (wi1zi1/z

o
i1))

...
0
...

−1− ln (wm1zm1/z
o
m1) + (1 + ln (wi1zi1/z

o
i1))

−(1 + ln (wi1zi1/z
o
i1))

− ln (w12z12/z
o
12) + ln (w11z11/z

o
11)− (1 + ln (wi1z

o
i1/ai1))

− ln (wm3zm3/z
o
m3) + ln (wm1zm1/z

o
m1)− (1 + ln (wi1z

o
i1/ai1))

− ln (wm4zm4/z
o
m4) + ln (wm1zm1/z

o
m1)− (1 + ln (wi1z

o
i1/ai1))

...
− ln (wmmzmm/zo

mm) + ln (wm1zm1/z
o
m1)− (1 + ln (wi1z

o
i1/ai1))



. (19)

In the same way we may proceed with the rest of the restraints or dual variables;

therefore it is clear that regardless the restraint we remove the solution of the dual problem

could be obtained for any removed restraint.

On the other hand it is interesting to examine what happens if in the obtained solution

some of the terms (i, j) corresponds to a zero element in the matrix zo; in that case it
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could not be obtained the dual variable value as we would have an indetermined value 0
0
,

and we would have to select another solution which allow us calculate the multiplier. As

that process may be hardworking and many times the number of non-zero elements is not

too high it is developed in this paper an alternative method which allows the calculation

of the dual variables that cannot be calculated with the particular solution in (18).

After some previous tasks the following equations:

λi = −1− log
ui

m∑
j=1

zo
ij

wij

exp (−µj)

; i = 1, . . . ,m (20)

µj = −1− log
vj

m∑
i=1

exp (−λi)
zo

ij

wij

; j = 2, . . . ,m. (21)

allow us to calculate in an iterative way the rest of the dual variables.

With respect to the dual variables κ, once we have the variables λ and µ, they may

be obtained by means of the equation:

κij = −λi − µj;∀(i, j) ∈ Ω0, (22)

that is, the sensitivity of the objective function with respect to a fixed parameter

zo
ij = 0 is the sum of the dual variables associated to its row λi and to its column µj.

The weighted RAS procedure for the dual problem solution may be resolved by means

of the following algorithm:

Algorithm 1 (Dual solution of the RAS weighted problem).

Input: Data including the initial transactions matrix zo, the weights associated to each

element in the former matrix w, and the rows and columns sums in the final tran-

sactions matrix u and v, respectively, and the solution of the primal problem z.

The maximum number of interactions imax, and a tolerance ε to control the process

convergence.

Output: Final values of the dual variables λ, µ and κ with a tolerance ε.

Step 1: Set creation Ω0, that is, for all elements of the original matrix zo check which

ones are zero and, in that case, store the corresponding row and column indexes.
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Step 2: Calculation of dual variables values λ, µ for the non-zero terms in the first row

and column of the initial transactions matrix zo by means of the solution provided by (18)

for ρ = 0.

Step 3: Iterative procedure for the calculation of the multipliers that could not be obtained

in an analitic way. While the error is bigger than the tolerance ε and the number of

iteractions niter is lower than the allowed limit imax, proceed with the following stages:

1. Obtain the new values of λi;∀i/zo
i1 = 0 & ui 6= 0 associated to the rows through (20).

2. Obtain the new values of µj;∀j/zo
j1 = 0 & uj 6= 0 associated to the columns through

(21).

3. Calculate the error value as the relative maximum diference of the current value

of all the elements of the vector [λ µ]T with respect to the values in the former

iteraction, and come back to the stage 1 of the step 3.

In the contrary case the procedure convergence has been achieved with the required to-

lerance adding the following step.

Step 4: Calculate the dual variables associated to the zero terms in the initial transactions

matrix and give back the solution of λ, µ and κ.

Once the multipliers have been obtained, the expression (18) allows calculate any

combination of dual variables depending on the restraint which is removed in (2)-(3), and

therefore the main issue is to know if the removed restraint has an influence in the dual

variables values. In this point some questions are raised:

1. Does it mean that different sensitivities are obtained according to the removed

restraint?

2. Would not it be better to obtain sensitivities which do not rely on the removed

restraint? In this way the dual problem would correspond with the uniqueness of

the primal problem.

The answer to these questions is affirmative so we have to rearrange the assesment

of the dual problem in the way of obtaining sensitivities which are independent from

the removed restraint. If the solution structure (18) is carefully analyzed, specially the

associated term to the vectorial space, it can be observed that the associated terms to λ
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and µ are equal but with the opposite sign. For this reason it can be demonstrated that

the following condition is fulfilled:

λi + µj + κij = cte.; ∀i = 1, . . . ,m; j = 1, . . . ,m; (i, j) ∈ Ω0

λi + µj = cte.; ∀i = 1, . . . ,m; j = 1, . . . ,m; (i, j) /∈ Ω0.
(23)

This means that the sum of the associated multipliers to the rows sums and to the

columns sums, respectively, is constant independently of the restriction removed to fulfil

the compatibility condition. In this way the dual sensitivity Φ matrix may be obtained

in the following way:

Φ =


λ1 + µ1 + κ11 λ1 + µ2 + κ12 λ1 + µ3 + κ13 · · · λ1 + µm + κ1m

λ2 + µ1 + κ21 λ2 + µ2 + κ22 λ2 + µ3 + κ23 · · · λ2 + µm + κ2m
...

...
...

. . .
...

λm + µ1 + κm1 λm + µ2 + κm2 λm + µ3 + κm3 · · · λm + µm + κmm

 , (24)

where each term Φij with the opposite sign represents the sensitivity of the objective

function when the output economic sector ith increases one unit and that growth means

economic sector jth purchases.

Remark 3 It has to be underlined that in the matrix (24) the elements κij = 0; (i, j) /∈ Ω0

are zero.

3 Conclusions

This paper provides a procedure for solving the primal and dual weighted RAS method,

obtaining not only the optimal solution of the primal problem but information of the

sensitivities of the solution with respect the parameters. The main conclusions derived

from the work reported can be summarized as follows:

1. Due to the excess of constraints in the mathematical definition of the RAS problem

the dual problem has infinite solutions; for this, a new procedure to obtain a unique

solution of the dual problem holding the compatibility condition is provided.

2. It turns out that this unique solution of the dual problem allows obtaining the sen-

sitivity matrix, invariant sensitivities (measurements) of the primal RAS objective

function with respect constraint parameters.
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3. The meaning of the sensitivity matrix obtained is very useful for the economic

analysis. That matrix shows us which is the influence of the interchanges between

economic sectors in the development of the economic structure of a certain region,

in the case of updating I-O tables, and the influence of those interchanges in the

regional economic singularity in a national context in the case of regionalizing I-O

tables.

4. The solution of the dual problem can be obtained efficiently once the solution of the

primal RAS problem is known using an iterative method.
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